Multi-channel lock-in amplifier assisted femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy with efficient rejection of superfluorescence background.
نویسندگان
چکیده
Superfluorescence appears as an intense background in femtosecond time-resolved fluorescence noncollinear optical parametric amplification spectroscopy, which severely interferes the reliable acquisition of the time-resolved fluorescence spectra especially for an optically dilute sample. Superfluorescence originates from the optical amplification of the vacuum quantum noise, which would be inevitably concomitant with the amplified fluorescence photons during the optical parametric amplification process. Here, we report the development of a femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectrometer assisted with a 32-channel lock-in amplifier for efficient rejection of the superfluorescence background. With this spectrometer, the superfluorescence background signal can be significantly reduced to 1/300-1/100 when the seeding fluorescence is modulated. An integrated 32-bundle optical fiber is used as a linear array light receiver connected to 32 photodiodes in one-to-one mode, and the photodiodes are further coupled to a home-built 32-channel synchronous digital lock-in amplifier. As an implementation, time-resolved fluorescence spectra for rhodamine 6G dye in ethanol solution at an optically dilute concentration of 10(-5)M excited at 510 nm with an excitation intensity of 70 nJ/pulse have been successfully recorded, and the detection limit at a pump intensity of 60 μJ/pulse was determined as about 13 photons/pulse. Concentration dependent redshift starting at 30 ps after the excitation in time-resolved fluorescence spectra of this dye has also been observed, which can be attributed to the formation of the excimer at a higher concentration, while the blueshift in the earlier time within 10 ps is attributed to the solvation process.
منابع مشابه
Generation and characterization of tunable mid-infrared femtosecond pulses
In this Chapter we describe the design of an optical parametric amplifier that allows the generation of infrared laser pulses suitable for ultrafast nonlinear spectroscopy on the OH-stretching mode of water molecules. Mid-infrared femtosecond pulses, tunable in the range of 2800-3800 cm with sub-100 fs duration and ~15 μJ energy are produced by an optical parametric amplifier driven at 1 kHz by...
متن کاملCompeting collinear and noncollinear interactions in chirped quasi-phase-matched optical parametric amplifiers
Chirped quasi-phase-matched optical parametric amplifiers (chirped QPM OPAs) are investigated experimentally. The measured collinear gain is constant over a broad bandwidth, which makes these devices attractive candidates for use in femtosecond amplifier systems. The experiment also shows that chirped QPM OPAs support noncollinear gain-guided modes. These modes can dominate the desired collinea...
متن کاملExcess quantum noise in optical parametric chirped-pulse amplification.
Noise evolution in an optical parametric chirped-pulse amplifier (OPCPA) differs essentially from that of an optical parametric or a conventional laser amplifier, in that an incoherent pedestal is produced by superfluorescence that can overwhelm the signal under strong saturation. Using a model for the nonlinear dynamics consistent with quantum mechanics, we numerically study the evolution of e...
متن کاملUltrafast gating using a nonlinear Sagnac interferometer
Ultrafast gating is a powerful technique for applications such as time resolved spectroscopy [ 1-3 ], imaging through scattering media [4-7 ], or nonlinear optics [ 8 ]. Several methods have been used, each of which has its own limitations. The Kerr shutter [ 3 ] is extremely fast (femtosecond) but requires high peak power lasers. It has a maximum transmission of approximately 10 percent, and i...
متن کاملPump-seed synchronization for MHz repetition rate, high-power optical parametric chirped pulse amplification.
We report on an active synchronization between two independent mode-locked lasers using a combined electronic-optical feedback. With this scheme, seed pulses at MHz repetition rate were amplified in a non-collinear optical parametric chirped pulse amplifier (OPCPA). The amplifier was seeded with stretched 1.5 nJ pulses from a femtosecond Ti:Sapphire oscillator, while pumped with the 1 ps, 2.9 µ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Review of scientific instruments
دوره 86 12 شماره
صفحات -
تاریخ انتشار 2015